Name	Hour

Pendulum Lab

Purpose: Determine the effect mass and length have on a pendulum.

Info: A pendulum consists of a mass called a _____ suspended from a support.

The period of a pendulum is the time for it to swing_____

Part 1: Length of a pendulum

<u>Data</u>: Pick 7 different lengths of string (at least 2 over 70 cm and at least 3 under 10 cm) and time how long it takes for the mass to swing back and forth 5 times. Divide by 5 to determine the average period of the pendulum for each length. Keep swings small- around 10-15°.
 *It works best if you start with your longest, and then cut that to make it shorter each time.

	Length (cm)	Length (m)	Time for 5 swings \back and forth	Period (T)	T ²
1	97			1.96	
2	90			1.92	
3	79			1.79	
4	68			1.67	
5	43			1.34	
6	9			0.77	
7	3			0.56	

Make a Period vs. Length graph below: (Collect the data on the back first.)

- 1. What is the shape of your T vs. length graph? _____
- a. In a <u>different color</u>, re-plot your graph using T² vs. length. (You may have to extend your graph vertically)
 - b. What is the shape of your T² vs. length graph? _____
 - c. What type of relationship exists between T² and L?

(Choose from direct, inverse, and no relationship)

Part 2: Mass of a Pendulum

<u>Data</u>: Pick 4 <u>different</u> masses and time how long it takes for the mass to swing back and forth 5

times. Divide by 5 to determine the average **period** of the pendulum for each mass.

	Mass (g)	Mass (kg)	Time for 5 swings back and forth	Period
			back and forth	(T)
1	200			1.52
2	150			1.53
3	100			1.51
4	50			1.53

Make a **Period vs. Mass** graph below:

3. What type of relationship exists between the period and mass of a pendulum? (Choose from direct, inverse, and no relationship)

Conclusion:

- 4. **Derive the equation for a pendulum**. © That means to show how to get it!
 - a. Start with $a_c = v^2/r$ and plug in $v = 2 \pi r/T$ into it for v:
 - b. Move around your variables to solve for T2:
 - c. Then rename your variables. The radius is just length of a pendulum (r=L) and $a_c = g$.) The equation for a pendulum is:

d. What relationship exists between T² and L? ______ Does your equation show this?_____
e. What relationship exists between T and m? ______ Does your equation show this?_____

5. Calculate how long a pendulum should be on earth to have a period of 1.2 sec if the mass is 1.2 kg. (ans. 0.36 m)