\qquad Hour \qquad

Purpose: Determine the effect mass and length have on a pendulum.
Info: A pendulum consists of a mass called a \qquad suspended from a support.

The period of a pendulum is the time for it to swing \qquad _.

Part 1: Length of a pendulum

Data: Pick 7 different lengths of string (at least 2 over $\mathbf{7 0} \mathbf{c m}$ and at least 3 under $\mathbf{1 0} \mathbf{c m}$) and time how long it takes for the mass to swing back and forth 5 times. Divide by 5 to determine the average period of the pendulum for each length. Keep swings small- around 10-150.
*It works best if you start with your longest, and then cut that to make it shorter each time.

	Length (cm)	Length (m)	Time for 5 swings back and forth	Period (T)	T^{2}
1	97			1.96	
2	90			1.92	
3	79			1.79	
4	68			1.67	
5	43			1.34	
6	9			0.77	
7	3			0.56	

Make a Period vs. Length graph below: (Collect the data on the back first.)

1. What is the shape of your T vs. length graph? \qquad
2. a. In a different color, re-plot your graph using \mathbf{T}^{2} vs. length. (You may have to extend your graph vertically)
b. What is the shape of your T^{2} vs. length graph? \qquad
c. What type of relationship exists between T^{2} and L ? \qquad
(Choose from direct, inverse, and no relationship)

Name \qquad Hour \qquad

Part 2: Mass of a Pendulum
Data: Pick 4 different masses and time how long it takes for the mass to swing back and forth 5 times. Divide by 5 to determine the average period of the pendulum for each mass.

	Mass (g)	Mass (kg)	Time for 5 swings back and forth	Period (T)
1	200			1.52
2	150			1.53
3	100			1.51
4	50			1.53

Make a Period vs. Mass graph below:

3. What type of relationship exists between the period and mass of a pendulum? \qquad (Choose from direct, inverse, and no relationship)

Conclusion:

4. Derive the equation for a pendulum. © ; That means to show how to get it!
a. Start with $a_{c}=v^{2} / r$ and plug in $v=2 \pi r / T$ into it for v :
b. Move around your variables to solve for T^{2} :
c. Then rename your variables. The radius is just length of a pendulum ($r=L$) and $a_{c}=g$.)

The equation for a pendulum is:

d. What relationship exists between T^{2} and L ? \qquad Does your equation show this? \qquad
e. What relationship exists between T and m ? \qquad Does your equation show this? \qquad
5. Calculate how long a pendulum should be on earth to have a period of 1.2 sec if the mass is 1.2 kg . (ans. 0.36 m)

